- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0004100000000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Tzamos, C (3)
-
Caramanis, C (2)
-
Kontonis, V (2)
-
Tzamos, C. (2)
-
Chawla, S. (1)
-
Daskalakis, C. (1)
-
Diakonikolas, I (1)
-
Fotakis, D (1)
-
Gouleakis, T. (1)
-
Kalavasis, A (1)
-
Rezvan, R. (1)
-
Teng, Y. (1)
-
Tsikouras, N (1)
-
Zampetakis, M. (1)
-
Zarifis, N (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 10, 2025
-
Chawla, S.; Rezvan, R.; Teng, Y.; Tzamos, C. (, Conference on Web and Internet Economics)
-
Caramanis, C; Fotakis, D; Kalavasis, A; Kontonis, V; Tzamos, C (, 37th Annual Conference on Neural Information Processing Systems, 2023)
-
Diakonikolas, I; Kontonis, V; Tzamos, C; Zarifis, N (, 36th Annual Conference on Learning Theory, 2023)
-
Daskalakis, C.; Gouleakis, T.; Tzamos, C.; Zampetakis, M. (, Annual Symposium on Foundations of Computer Science)We provide an efficient algorithm for the classical problem, going back to Galton, Pearson, and Fisher, of estimating, with arbitrary accuracy the parameters of a multivariate normal distribution from truncated samples. Truncated samples from a d-variate normal N(μ,Σ) means a samples is only revealed if it falls in some subset S⊆Rd; otherwise the samples are hidden and their count in proportion to the revealed samples is also hidden. We show that the mean μ and covariance matrix Σ can be estimated with arbitrary accuracy in polynomial-time, as long as we have oracle access to S, and S has non-trivial measure under the unknown d-variate normal distribution. Additionally we show that without oracle access to S, any non-trivial estimation is impossible.more » « less
An official website of the United States government

Full Text Available